
Methodology for Evaluating the Potential of
Disaggregated Memory Systems

Nan Ding, Samuel Williams, Hai Ah Nam, Taylor Groves, Muaaz Gul Awan
LeAnn Lindsey, Christopher Daley, Oguz Selvitopi, Leonid Oliker, Nicholas Wright

Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
{nanding, swwilliams, hnam, tgroves, mgawan, lmlindsey, csdaley, roselvitopi, loliker, njwright}@lbl.gov

Abstract—Tightly-coupled HPC systems have rigid memory
allocation and can result in expensive memory resource underuti-
lization. As novel memory and network technologies mature, dis-
aggregated memory systems are becoming a promising solution
for future HPC systems. It allows workloads to use the available
memory of the entire system. In this paper, we propose a design
framework to explore the disaggregated memory system design
space. The framework incorporates memory capacity, network
bandwidth, and local and remote memory access ratio, and
provides an intuitive approach to guide machine configurations
based on technology trends and workload characteristics. We
apply our framework to analyze eleven workloads from five
computational scenarios, including AI training, data analysis,
genomics, protein, and traditional HPC. We demonstrate the
ability of our methodology to understand the potential and
pitfalls on a disaggregated memory system and motivate machine
configurations. Our methodology shows that the 10 out of our
11 applications/workflows can leverage disaggregated memory
without affecting performance.

Index Terms—Memory disaggregation, system architecture
design space

I. INTRODUCTION

The last five decades have seen compute and high-capacity
memory performance continue to diverge. In response, com-
puter architects have added more and more levels of caching
within the memory hierarchy to mitigate this performance
discrepancy for the applications that exhibit sufficient temporal
and spatial locality. Today, GPU-accelerated systems rely on
a hierarchy of progressively faster and smaller memories
— CPU-attached DDR high capacity memory, GPU-attached
HBM high performance memory, and multiple levels of very
fast, on-GPU, SRAM cache memories. Future systems (e.g.
NVIDIA’s Hopper H100 GPU [1]) will continue to leverage
this template, but do so in a more tightly integrated and per-
formant form factor. Integration will ultimately enable single-
chip CPU-GPU architectures — the Accelerated Processing
Unit (APU).

Although the trend towards integration can improve perfor-
mance, it can result in large, expensive, monolithic computing
nodes whose resource utilization can vary greatly from one
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application to another within a workload. Examples include
the observation that only 15% of the scientific workloads on
NERSC’s Cori supercomputer use over 75% of the available
memory per node [2] and that 90% of jobs utilize less than
15% of the node memory capacity on the HPC clusters at
Lawrence Livermore National Laboratory [3]. Additionally,
up to 83% of memory can be underutilized on these tightly-
coupled resources that are over-provisioned for workloads with
the greatest demands [4]. Similarly, in the commercial cloud
sector, it has been shown that memory is the dominate cost of
servers while most VMs use less than half of their available
memory [5]. As such, HPC system architects are often forced
to either overprovision systems for the long tail of memory
requirements (incurring substantial additional cost), deploy a
variety of node architectures (incurring the complexity and
inefficiency of job scheduling), or demand those applications
restructure themselves to fit in half or a quarter of their
nominal memory footprint.

Concurrently, many applications and workflows leverage
high-performance distributed file systems for rather mundane
tasks — holding read-only or private files — resulting in an
overprovisioning of file system performance and degrading
QoS for the applications that truly need a high-performance
distributed file system.

Recent improvements in interconnect technology [5] have
reinvigorated memory disaggregation as a viable solution to
both the memory and file system stranded resource problems.
Memory disaggregation decouples compute and memory re-
sources. Compute nodes would contain only a limited amount
of local memory, but could access a large pool of remote
memory available via the network. This design enables HPC
systems to easily scale memory capacity and allocate memory
more flexibly. Physically, this large pool of memory will
be partitioned among a number of smaller “memory nodes”
containing DRAM and a NIC in order to maximize bandwidth,
capacity, reliability, etc...

In this paper, we explore the value of adding disaggregated
memory to an APU-only HPC system. To that end, it is imper-
ative one provide a methodology for analyzing how technology
and system architecture constrain application performance. In
our work, we:

1) Develop a methodology for evaluating and visualizing
application performance on disaggregated systems.

2) Characterize and analyze eleven applications and work-
flows using two extensions of the Roofline model.



3) Provide insights and guidance to vendors developing
technologies that support disaggregated memory.

4) Discuss how HPC system architects should use our
methodology to evaluate different disaggregated mem-
ory system architectures for their respective workloads
(a time- and space-weighted set of applications).

Our results demonstrate that 10 of our 11 examined applica-
tions do not suffer a performance penalty using a disaggregated
system with a significantly reduced memory balance.

II. RELATED WORK

Recent studies highlight how the current approach of al-
locating resources to jobs on statically-configured compute
nodes wastes memory and NIC resources. Utilization analysis
for HPC systems report the average memory utilization of a
job can be as small as 11.9% and 74.63% of individual jobs
never use more than 50% of on-node memory. Approximately
three-quarters of the time, each compute node uses only
0.3% of memory bandwidth and 0.5% of available NIC band-
width [4]. Often resources are idle, since HPC system node
design is based on the peak usage, i.e., the maximum memory
usage. It is worth mentioning that DRAM consumes static
power even when idle, so unused memory still contributes to
the HPC system operating cost [3]. It has become a common
state of the practice for memory resources on HPC systems to
be over-provisioned and have low resource utilization.

The problem of low memory utilization is fundamentally
not solvable with current static allocations on tightly-coupled
HPC systems. Network-attached memory disaggregation has
been proposed to improve resource utilization for nearly a
decade and is seeing a resurgence of interest to improve
memory utilization in commercial cloud data centers [4, 6–
12]. The growing interest and maturity of Compute Express
Link (CXL) [13–16], a standardized protocol for memory
pooling, has been contributing to this renewed interest in
memory disaggregation. CXL provides memory coherency and
semantics over the PCIe physical layer. A practical CXL based
disaggregated solution for a production cloud deployment
projected that the memory pooling approach would incur
only a performance loss between 1-5%, but could achieve a
9-10% reduction in overall system DRAM required, which
represents hundreds of millions of dollars in cost savings for
a large cloud provider [5]. Recently, disaggregated remote
memory has been proposed for HPC systems. Peng et al.
further designed a user-space remote paging library to allow
applications to explore the potential of throughput scaling on
disaggregated memory [3].

Previous studies focus on exploring the potential benefits
of memory disaggregation and the limitations using current
HPC systems [3, 4, 9, 10, 17]. The main concern for imple-
menting memory disaggregation is the bandwidth and latency
penalty over the network which would degrade application
performance [18]. However, there is no structured analytical
method that demonstrates which applications are performance
constrained on the disaggregated memory system, how much
the network performance penalty affects performance, and
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Fig. 1: Memory bandwidth trends for HBM, DDR and PCIe
from years 2022 to 2026. Relative bandwidth improvements
remain constant. The PCIe is the performance bottleneck for
disaggregated systems.

what are important application metrics to reason the per-
formance on a disaggregated memory system. Missing from
past work is a practical and intuitive approach to assess how
much disaggregation is needed or viable given the technology
trend and the impacts to the diverse workload. In this paper,
we aim to provide a structured system design model to
explore the architecture design space and its capabilities. We
provide several methods to visualize the design space and a
methodology that could be adapted for a broader range of
users, e.g., vendors and application developers, to help to
design a new architecture or purchase future systems.

III. SYSTEM ARCHITECTURE DESIGN

It is necessary to understand the emerging technology trends
and capabilities in a future disaggregated memory system to
assess the potential benefits and pitfalls. Fig. 1 charts the
memory bandwidth trends of HBM, DDR, and PCIe from
today to the year 2026. We assume HBM3 is built with eight
16-Hi stacks and each stack has a capacity of 64 GB. We
use the maximum capacity and bandwidth per DIMM (DDR4:
32 GB/DIMM and 25.6 GB/s/DIMM; DDR5: 256 GB/DIMM
and 51.2 GB/s/DIMM) with a total of 16 DIMMs for DRAM
memory. Both CXL devices and network interface cards are
limited by the performance of the physical PCIe interconnect
that they connect through. As such, PCIe would eventually be
the performance bottleneck on a disaggregated system since
data needs to be loaded from DDR via the network.

Fig. 2 presents a schematic of a basic network-attached
disaggregated memory system. We consider that such a system
could have C compute nodes and M memory nodes. Each
compute node consists of an accelerated processing unit (APU)
with its own local high-bandwidth memory (HBM). An APU
combines a CPU with a GPU onto a single silicon die, and both
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Fig. 2: Conceptual disaggregated memory system architecture.
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(a) C
M = 1

1 : 100% of one memory node capacity
and 100% of remote memory bandwidth

(b) C
M = 2

1 : 50% of one memory node capacity
and 50% of remote memory bandwidth

(c) C
M = 1

2 : 200% of one memory node capacity
and 100% of remote memory bandwidth

Fig. 3: Three use cases for network-attached disaggregated memory. Each varies the ratio of compute nodes (C) to
memory nodes (M) and gives the available remote memory bandwidth (relative to one NIC) and remote memory capacity
(relative to one memory node) available to each compute node. The �exibility of disaggregated memory allows systems
to realize all three con�gurations simultaneously for different applications.

CPU and GPU share a common path to the remote memory.
Future processor trends favor the APU because it addresses the
bottleneck of data transfers between CPU and GPU [19, 20].
Each memory node is equipped with DDR memory as the
remote memory. The compute nodes and memory nodes are
connected via a network and is assumed to have one PCIe
NIC. Using these assumptions, we propose a structured system
architecture design methodology to explore the potential and
pitfalls of disaggregated memory.

A. Remote memory resources versus utilization

Fig.3 visualizes three use cases that highlight the impact
of system architecture on available remote memory capacity
and memory bandwidth. Fig. 3a highlights the simplest case
( C

M = 1
1 ), where each compute node is in a job is paired with

one memory node. Each compute node would theoretically
have access the the memory's nodes full capacity and 100%
of the NIC's bandwidth as remote memory bandwidth. Unsur-
prisingly, in the case ofCM = 2

1 in Fig. 3b, each compute node
has haf the capacity and half the remote memory bandwidth.
Interestingly, if C

M = 1
2 as in Fig. 3c, each compute node could

access 200% of a memory node's capacity, but still only attain
100% of the NIC bandwidth as remote memory bandwidth as
bandwidth is constrained by the APU's NIC rather than the
two memory node NICs.

Following this method, we can build a design space with
various ratios to describe the hardware capabilities in terms
of memory capacity and available remote memory bandwidth.
We scale the building blocks to a modern-day HPC system and
assume that we have 10K compute nodes. The heat maps in
Fig. 4 present the (a) available remote memory capacity and
(b) available remote memory bandwidth per compute node
under different compute and memory node ratios, assuming
one memory node capacity of 4TB. For the �xed number of
compute nodes, Fig. 4a shows the available DDR5 remote
memory capacity (TB) to the compute nodes with growing
numbers of memory nodes (100 to 20K). The vertical axis is
binned into the percentage of compute nodes that will require
more resources than the local HBM memory and use the
remote DDR memory, a value that will be speci�c to HPC
systems and their workload. The available remote memory

capacity per compute node becomes larger as we increase the
number of memory nodes (moving left to right of Fig. 4a).
That is to say, there is less contention as we increase the
number of memory nodes. Similarly, we can also reduce
contention as the number of compute nodes that require remote
memory decreases (moving top to bottom of Fig. 4a). For
example, the �rst row represents the scenario where all the
compute nodes require remote memory. Therefore, if we have
10K DDR5 memory nodes (CM = 1

1 ), each compute node can
access one memory node's capacity of 4TB. When decreasing
the demand, only 5K compute nodes (50% of the total 10K)
require the remote memory of 10K memory nodes, then each
compute node can then access 8TB of remote memory, which
equals the capacity of two memory nodes. Correspondingly,
Fig. 4b presents the available remote memory bandwidth for
the cases in Fig. 4a. Unlike memory capacity in Fig. 4a,
memory bandwidth in Fig. 4b will saturate at the compute
node's peak NIC bandwidth as one moves decreasesC

M (right)
or one decreases the fraction of compute nodes requiring
remote memory (down).

Determining an optimal system con�guration relies on mul-
tiple factors speci�c to the HPC system workload (demand)
and available budget (supply of memory nodes). Fig. 1 sug-
gests in the 2026 time frame, HBM3 could provide 0.5TB of
local memory. Thus, in planning for the next machine, as a
guiding principle, there should be enough memory nodes to
provide more remote memory capacity per node than local
memory capacity. As such, con�gurations in the upper left
region of Fig. 4 where memory node capacity is smaller than
0.5TB are wasteful architectures. Conversely, con�gurations
on the right of the �gure can be quite expensive as there are as
many or more memory nodes than compute nodes (the network
has 2-3� more endpoints). Finally, although con�gurations in
the bottom right provide 100s of TB per compute node, they
can only access it at 100GB/s. As such, it will take minutes to
hours to read all of remote memory once. Such architectural
con�gurations may become impractical given the number of
times an application might desire to read memory coupled with
�nite job run time limits.
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(a) Available remote memory capacity per compute node.

(b) Available remote memory bandwidth per compute node.

Fig. 4: Disaggregated memory system design space assuming
�xed 10K (C) compute nodes and varying the number of (M)
memory nodes, each with 4TB of DDR5 remote memory
accessed through a PCIe6 NIC. Contention is reduced from
left to right and from top to bottom. The y-axis shows the
demand from compute nodes for remote memory and the x-
axis shows the supply of memory nodes available.

B. Remote memory access patterns

Disaggregated memory promises to improve system-wide
memory utilization, but individual application performance is
of equal concern. Prior work argues that disaggregation comes
with substantial bandwidth and latency penalties to applica-
tions [3]. However, such conclusions are derived assuming
current technologies and lack consideration of emerging tech-
nologies in the future. To analyze the impact to individual
applications in the near future, we introduce the local to
remote memory access ratio (L:R) metric to characterize
application performance on a disaggregated memory system.

We then correlate the metrics using a memory Roo�ine plot
to provide a generalized framework to evaluate and visualize
the performance bottlenecks of applications running on a
disaggregated memory system.

The traditional Roo�ine model [21] characterizes an appli-
cation's performance (GFLOP/s) as a function of its arithmetic
intensity (FLOPs executed per Byte moved). It provides a
quick visual comparison of the application performance com-
pared against the bounds set by the peak compute performance
(GFLOP/s) and the peak memory bandwidth of the target
architecture (GB/s) to determine what is limiting performance:
memory or compute.

Following the methodology of the traditional Roo�ine
model, our new memory Roo�ine model characterizes an
application's sustained memory performance (GB/s) as a func-
tion of its local and remote memory access ratio (L:R), the
peak local memory bandwidth, and the peak remote memory
bandwidth. An application's L:R on a disaggregated memory
system could be considered as the ratio of HBM data move-
ment (local) to the DDR data movement (remote over PCIe) or
even the HBM to �le size ratio when examining applications
using memory nodes as a private �le system. Applications
with a L:R data movement ratio greater than the system's
local:remote bandwidth ratio can effectively hide the slow
remote (disaggregated) memory bandwidth behind a multitude
of fast, local memory accesses.

Fig. 5 presents the memory Roo�ine model using future
HBM (local) and PCIe (remote) bandwidths. One quickly
observes the visual similarity to the traditional Roo�ine model
with local bandwidth replacing the traditional peak GFLOP/s
plateau and remote bandwidths replacing the traditional mem-
ory diagonals. We observe an HBM3:PCIe6 machine balance
of 65.5 — the ratio of data movement that results in equal
time for local and remote transfers. This ratio is very close to
today's HBM2:PCIe4 machine balance of 62.2. This suggests
future hardware trends will not detract from the ef�cacy of
disaggregated memory.

Applications like ADEPT with a L:R ratio of nearly 500 (far
greater than 65.5) are insensitive to memory disaggregation,
dominated by on-node performance, and will use less than
14% of the available PCIe bandwidth (green diagonal line).
Conversely, applications like STREAM with an theoretical L:R
ratio of 2 will see their performance limited and degraded
by disaggregated memory bandwidth. Ultimately, increases in
NIC bandwidth shift the machine balance to the left (decreas-
ing the number of applications penalized by disaggregation)
while increases in HBM bandwidth shift the machine balance
to the right (increasing the number of applications penalized
by disaggregation).

IV. A PPLICATION CASE STUDIES

In this section, we apply our system architecture design
methodology to select a disaggregated system con�guration
and evaluate the potential performance using eleven applica-
tions across �ve computational scenarios.
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Fig. 5: Memory Roo�ine model characterizing an appli-
cation's memory access performance (GB/s) as a function
of its local to remote memory access ratio (L:R). A high
L:R ration is critical in mitigating the performance penalties
of disaggregated memory. Observe ADEPT is insensitive to
disaggregated memory while STREAM is penalized by it.

A. Disaggregated System Con�gurations

To select a machine con�guration, recall the HPC system
described in Section III. A with 10,000 compute nodes with
512 GB of HBM3 local memory capacity, accessing DDR5
remote memory nodes via PCIe6-connected NICs. As previous
studies showed only 15% of the workloads use 75% of
the node memory [2], we conservatively assume that at any
instant, 10% of the compute nodes will require remote memory
for our machine con�guration. Referencing Fig 4a, at 10%,
we could choose 500 memory nodes or more with DDR5
memory (x-axis) to ensure each compute node has access
to remote memory greater than the local HMB3 memory.
Including the memory bandwidth information from Fig 4b,
the maximum memory bandwidth per compute node peaks at
1000 memory nodes. Purchasing more memory nodes would
only add additional capacity and cost, not additional memory
bandwidth. For the con�guration of 10,000 compute nodes
accessing an aggregate four petabytes of DDR5 memory
on 1000 memory nodes, we see from Fig.4 that each of
the compute nodes requiring remote memory can access, on
average, four terabytes of remote memory with a peak remote
memory bandwidth of 100 GB/s.

B. Application Characteristics

Due to the diversity of applications, the case studies we
examined required a variety of approaches to measure or
estimate the local and remote memory accesses (L:R). This
section summaries the high-level methods of calculating L:R
for each workload. Note that throughout the paper, we assume
each application will preserve its current conceptual approach
to exploiting data locality and expressing data movement when
ported to a disaggregated memory architecture even if the
mechanisms are syntactically different.

Arti�cial intelligence (AI) training workloads. AI is an
area of increasing scienti�c interest with growing computa-
tional demands [2]. It is a driver for future DOE investments
in HPC platforms [22]. We focus on training workloads,
which is more computationally expensive and requires a larger

memory capacity than inference. We demonstrate the bene�t
of a disaggregated memory system using three AI training
workloads: CosmoFlow [23] and DeepCAM [24] from the
MLPerf HPC benchmark suite [25], and a well established
image classi�cation model, ResNet-50 [26] from the MLPerf
Training benchmark suite [27]. The actual computation and
memory characteristics of the three AI training workloads
come from Ibrahimet al. [28] and listed in Table I. The
local:remote memory ratio is characterized by FLOP:sample
Byte/Flop:HBM Byte. All the numbers reported in Table I
refer to the memory per job.

TABLE I: Computation and Memory Characteristics

ResNet-50 DeepCAM CosmoFlow
Training set size [28] 0.15 TB 8.8 TB 5.1 TB
FLOP:HBM Byte [28] 55.35 55.5 38.6
FLOP:sample Byte [28] 221,000 107,000 15,400
Local:Remote memory access ratio 3993 1927 399

Data analysis workloads. Data analysis applications are
a growing workload in HPC facilities [2]. We use two data
analysis software frameworks, DASSA [29] and TOAST [30],
to showcase disaggregated memory bene�ts. DASSA [29] is a
distributed acoustic sensing (DAS) data storage and analysis
framework for geophysicists to perform DAS data analysis
on HPC systems. We use a real DAS data analysis case for
earthquake detection via local similarity. We use analytical
modeling to estimate the L:R and refer its input �le size as
the remote memory capacity requirement.

TOAST [30] is a software framework designed for sim-
ulation and reduction of data from telescope receivers which
acquire time streams of individual detector responses. Here we
use a satellite telescope benchmark as an example to show the
implication of memory disaggregation. The core computation
in the satellite telescope benchmark is the PCG solver. We
pro�le its DRAM data movement using Intel Vtune on one
Cori Haswell [31] node as its local memory accesses and refer
its input �le size as the remote memory capacity requirement.

Genomics workloads. With the rapid development of
genome sequencing technologies, it is now possible to sample
and study genomes at an unprecedented scale. MetaHip-
Mer [32] is a large-scale metagenome assembler that can
leverage the large memory and compute capacities of su-
percomputers to co-assemble terabase-scale datasets. We use
three important kernels in MetaHipMer, ADEPT [33] w/wo
traceback and EXTENSION [34] to understand the their po-
tential on a disaggregated memory system. We use analytical
modeling to calculate the L:R of ADEPT w/wo traceback
kernels. We use NVIDIA NSight compute [35] to collect the
HBM data movement for single extension on Cori GPU [36],
and then multiply that with 45 million extensions as its local
memory access. We use analytical modeling to estimate the
remote memory capacities for all three kernels.

Protein similarity search workloads. Bioinformatics
applications have been increasingly turning to HPC solutions
for solving big problems with reasonable time-to-solution.
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